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Recursion

• A recursive solution describes a procedure for a 
particular task in terms of applying the same procedure 
to a similar but smaller task.


• Must have a base case when the task is so simple that 
no recursion is needed.


• Recursive calls must eventually converge to a base 
case.



Recursive Method
• A recursive method calls itself.


• A recursive method has at least one base case and at 
least one recursive case.


In the base case, there are no recursive calls

In the recursive case, the method calls itself, but for a “smaller” 
task


• A recursive method must have a conditional statement 
to decide base case vs. recursive case.


• Recursive calls must eventually converge to a base 
case, when recursion stops.



Recursive Method (cont)

  public String reverseChars (String str) 
  { 
     if (str.length() == 0) return “”; 

     return reverseChars(str.substring(1)) 
                                + str.charAt(0); 
  }

Calls itself 
(recursive case)

Base case

Converges 
(e.g. smaller task)

Conditional



How Recursion Works
• Implemented on a computer as a form of iterations, but 

hidden from the programmer.


• Assisted by the system stack.

str = “S”

str = “CS”

str = “PCS”

reverseChars(“APCS”)

str = “APCS”
reverseChars

reverseChars
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str = “S”

str = “SC”

str = “SCP”

str = “SCPA”



When to Use Recursion
• Recursion is especially useful for handling  

nested structures and branching processes.
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When to Use Recursion
• Recursion is especially useful for handling  

nested structures and branching processes.


• When it significantly simplifies code without significant 
performance penalty.

Do Not Use Recursion
• When a method allocates large local arrays.


• When a method unpredictably changes object fields.


• When an iterative solution is just as simple.



Recursion and Math Induction
• Recursive methods are hard to trace in a conventional 

way.


• A recursive method can be proven correct using 
mathematical induction.


• Other properties of a recursive method (running time, 
required space, etc.) can be obtained by using 
mathematical induction.



Mathematical Induction Basics
• You have a sequence of statements to prove true 

(hypothesis)

P1, P2, P3, ... Pn-1 , Pn , ... 

• First, show P1 (n = 1) is true (“base case”).


• Next, assume that for any n > 1, that P1, ... Pn-1 are all 
true (“inductive hypothesis”).


• Using deductive reasoning, show Pn must be true, too 
(“inductive step”).


• Finally, you can conclude (“by mathematical induction”) 
that Pn is true for any n ≥ 1.



Mathematical Induction Example:
Prove that for any integer n ≥ 1 

        1 + 2 + 4 + ... + 2n = 2n+1 - 1 
Proof: 
1. Base case: If n = 1, then 1 + 21 = 22 - 1 
2. Suppose (inductive hypothesis) 
        for n = k-1 that  1 + 2 + 4 + ... + 2k-1 = 2k - 1  is true 
3. Then (inductive step) for n = k 
        1 + 2 + 4 + ... + 2k = 
        (1 + 2 + 4 + ... 2k-1) + 2k = (2k - 1) + 2k = 
        2·(2k) - 1 = 2k+1 - 1 

By math induction, the equality is true for any n ≥ 1,  q.e.d.



Mathematical Induction Problem:
Prove that for any n ≥ 1 

        12 + 22 + 32 + 42 + ... + n2 =  
Proof: 
1. Base case: when n = 1 then 

2. Suppose (Inductive hypothesis) 

3. Then (inductive step) show 

n n +1( ) 2n +1( )
6



Mathematical Induction Problem:
Prove that for any n ≥ 1 

        12 + 22 + 32 + 42 + ... + n2 =  
Proof: 
1. Base case: when n = 1 then 

2. Suppose (Inductive hypothesis) n = k - 1 and 

3. Then (inductive step) show 
      Using substitution:

n n +1( ) 2n +1( )
6

12 +22 + ...+(k−1)2 =
k−1( )k 2k−1( )

6
12 +22 + ...+(k−1)2 +k2 =

k k+1( ) 2k+1( )
6

12 +22 + ...+(k−1)2 +k2 =
k−1( )k 2k−1( )

6 +k2 =
k k+1( ) 2k+1( )

6

12 =
1 1+1( ) 2+1( )

6 =1



Induction and Recursion
  public String reverseChars (String str) 
  { 
     if (str.length() == 0) return “”; 

     return reverseChars(str.substring(1)) 
                                + str.charAt(0); 
  }

Let us verify that this method works, that is, 
reverseChars(s) indeed returns the reverse of s.  
We will use math induction “over the length of s.”



Proof   public String reverseChars (String str) 
  { 
     if (str.length() == 0) return “”; 

     return reverseChars(str.substring(1)) 
                                + str.charAt(0); 
  }

Let n = s.length(); Prove that reverseChars(s) returns a string with the 
characters of s reversed for n ≥ 0. 

1. Base case: If n = 0 or n = 1 then reverseChars() works because 
the string remains unchanged. 

2. Suppose (inductive hypothesis) 
     assume for s.length() = k-1 that reverseChars(s) works. 

3.  Then (inductive step)   Add a k’th character c to the front of 
     string s to make the string c + s. 
     reverseChars(c + s) returns reverseChars(s) + c which  
     is the reverse of c + s. 

By math induction, reverseChars works for a string of length n ≥ 0, q.e.d.



Questions?


